
The COM Specification Chapter 13. Interface Definition Language

0Part IV: Type Information

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved



Chapter 13. Interface Definition Language The COM Specification

1Interface Definition Language
As was described previously in this specification, the COM infrastructure is completely divorced from
the  source-level  tools  used  to  create  and  use  COM  components.  COM  is  completely  a  binary
specification, and thus source-level specifications and standards have no role to play in the fundamental
architecture of the system.
Specifically, and somewhat different than other environments, this includes any and all forms of interface
definition language (IDL). Having an interoperable standard for an appropriate IDL (or any other source
level tool for that matter) is still incredibly valuable and useful, it’s just important to understand that this
is a tool standard and not a fundamental system standard. Contrast this, for example, with the DCE RPC
API specification,  where,  if  only  because  the  fundamental  SendReceive  API is  not  part  of  the  public
standard runtime infrastructure, one must use IDL to interoperate with the system. 1 People can (and have,
out  of  necessity)  built  COM components  with  custom  COM interfaces  without  using  any  interface
definition language at all. This clear separation of system standards from tools standards is an important
point, for without it COM tools vendors cannot innovate without centralizing their innovations through
some central standards body. Innovation is stifled, and the customers suffer a loss of valuable tools in the
marketplace.
That all being said, as was just mentioned, source-level standards are still useful, and DCE IDL is one
such standard. The following enhancements to DCE IDL enable it to specify COM interfaces in addition
to DCE RPC interfaces.2

1.1Object RPC IDL Extensions

1.1.1‘Object’ interface attribute

COM interfaces are signified by a new interface attribute, ‘object’. See [CAE RPC], page 238.
<interface_attributes> ::= <interface_attribute> [ , <interface_attribute> ] ...
<interface_attribute>  ::= uuid ( <Uuid_rep> )

| version ( <Integer_literal>[.Integer_literal>])
| endpoint ( <port_spec> [ ,<port_spec> ] ... )
| local
| pointer_default ( <ptr_attr> )
| object

<port_spec> ::= <Family_string> : <[> <Port_string> <]>
The object interface attribute attributed may not be specified with the version attribute. However, it may be
specified with any of the others, though the uuid attribute is virtually always used and the local attribute is
used but rarely.
If this keyword is present, the following extensions are enabled in the interface.

1.1.2Interface name as a type
The interface name becomes the name of a type, which can then be used as a parameter in methods. For
example:

[object, uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]
interface IFoo {

};
causes a typed named "IFoo" to be declared, such that a method

[object, uuid(6A874340-57EB-11ce-A964-00AA006C3706)] 
interface IBar {

HRESULT M1([in] short i, [in] IFoo* pfoo);
};

1  By definition one cannot, for example, write a source-portable DCE IDL compiler, for the code that calls SendReceive in the
proxies is implementation-specific.

2  Microsoft  has  in  its  MIDL  specification  language  defined  additional  extensions  to  DCE  IDL;  however,  these  are
orthogonal to the subject of COM interface, and thus are not dealt with here.

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

This page intentionally left blank.



The COM Specification Chapter 13. Interface Definition Language

is a legal declaration.

1.1.3No handle_t required
In methods, no  handle_t argument is needed, and it's absence does not indicate auto-binding. Instead, a
“this” pointer is used in the C++ binding to indicate the remote object being referenced, and an implicit
extra first argument is used in C.  For example:

[object, uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]
interface IBar {

HRESULT Bar([in] short i, [in] IFoo * pIF);
};

can be invoked from C++ with:
IFoo * pIF; 
IBar * pIB;
pIB->Bar(3, pIF);

or from C with the equivalent 
pIB->lpVtbl->Bar(pIB, 3, pIF);

1.1.4Interface inheritance
Single inheritance of interfaces is supported, using the C++ notation for same. Referring again to [CAE
RPC], page 238:

<interface_header> ::= 
<[> <interface_attributes> <]> interface <Identifier> [ <:> <Identifier> ]

For example:
[object, uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]

interface IBar : IWazoo {
HRESULT Bar([in] short i, [in] IFoo * pIF);
};

cases the first methods in IBar to be the methods of IWazoo.

1.1.5iid_is and use of void*
The use of “void*” pointers are permitted, as long as such pointers are qualified with an “ iid_is” pointer
attribute. See [CAE RPC], page 253.

<ptr_attr> ::= ref
| ptr
| iid_is ( <attr_var_list> )
| unique3

The iid_is construct says that the void* parameter is an interface pointer whose type is only known at run
time, but whose interface ID is the parameter named in the iid_is attribute.  For example:

[object, uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]
interface IBar : IWazoo {

Bar([in] short i, [in, ref] uuid_t *piid, [out, iid_is(piid)] void ** ppvoid);
};

This can be invoked in C++ as:
IFoo* pIF;
pIB->Bar(i, &IID_IFoo, (void*)&pIF);

where “IID_IFoo” is the name of a constant whose value is the interface ID for IFoo.

1.1.6All methods must return void or HRESULT
Asynchronous  methods  (and  only  asynchronous  methods)  must  return  void,  all  others  must  return
HRESULT.

1.1.7The wire_marshal attribute
typedef  [wire_marshal( transmissible_type)]   type_specifier  user_type;

3  This is a non-COM-related Microsoft extension, shown here for completeness.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved



Chapter 13. Interface Definition Language The COM Specification

This attribute is a type attribute used in the IDL file and is somewhat similar in syntax and semantic to
the  transmit_as attribute.  Each user-specific type has a corresponding transmissible type that defines the
wire representation.
The user can define his specific type quite freely, (simple types, pointer types and composite types may
be used)  although  some restrictions  apply.  The  main  one  is that  the  type  object  needs  to  have  well
defined (fixed) memory size. If the changeable size needs to be accommodated, the type should have a
pointer field as opposed to a conformant array;  or, it  can be a pointer to the interesting type. General
restrictions  apply  as  usual.  Specific  restrictions  related  to  embedding  affect  the  way  types  can  be
specified. For more information see the “User type vs. wire type” section.
The [wire_marshal] attribute cannot be used with  [allocate()] attribute (directly or indirectly) as the engine
doesn’t  control  the memory allocation for the type.  Also the wire type cannot be an interface  pointer
(these may be marshaled directly) or a full pointer (we cannot take care of the aliasing).
The following is a list of additional points regarding wire_marshal:

· The wire type cannot be an interface pointer.
· The wire type cannot be a full pointer. 
· The wire type cannot have allocate attribute on it (like [allocate(all_nodes)]).
· The wire type has to have a well defined memory size (cannot be a conformant structure etc.) as we

allocate the top level object for the user as usual.
· When the engine delegates responsibility for a  wire_marshalable type to the user supplied  routines,

everything is up to the user including servicing of the possible embedded types that are defined
with wire_marshal, user_marshal, transmit_as etc.

· wire_marshal is mutually  exclusive  with  user_marshal,  transmit_as or  represent_as when applied  to  the
same type. 

· Two different user types cannot resolve to the same wire type and vice versa.
· The user type may or may not be rpc-able.
· The user type must be known to MIDL.

1.1.8The user_marshal attribute
typedef  [user_marshal( user_type)]   transmissible_type;

This attribute is a type attribute used in the ACF file and is somewhat similar in syntax and semantic to
the represent_as attribute. Each user-specific type has a corresponding transmissible type that defines the
wire representation. Similar to represent_as, in the generated files, each usage of the trasmissible_type name
is substituted by the user_type name. 
The user can define his specific type quite freely, (simple types, pointer types and composite types may
be used)  although  some restrictions  apply.  The  main  one  is that  the  type  object  needs  to  have  well
defined (fixed) memory size. If the changeable size needs to be accommodated, the type should have a
pointer field as opposed to a conformant array;  or, it  can be a pointer to the interesting type. General
restrictions  apply  as  usual.  Specific  restrictions  related  to  embedding  affect  the  way  types  can  be
specified. For more information see the “User type vs. wire type” section.
The [user_marshal] attribute cannot be used with  [allocate()] attribute (directly or indirectly) as the engine
doesn’t  control  the memory allocation for the type.  Also the wire type cannot be an interface  pointer
(these may be marshaled directly) or a full pointer (we cannot take care of the aliasing).
Additional points regarding user_marshal:

· The wire type cannot be an interface pointer.
· The wire type cannot be a full pointer.
· The wire type cannot have allocate attribute on it (like [allocate(all_nodes)]).
· The wire type has to have a well defined memory size (cannot be a conformant structure etc.) as we

allocate the top level object for the user as usual.

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved



The COM Specification Chapter 13. Interface Definition Language

· When the engine delegates responsibility for a  user_marshalable type to the user supplied  routines,
everything is up to the user including servicing of the possible embedded types that are defined
with user_marshal, transmit_as etc.

· user_marshal is mutually  exclusive  with  wire_marshal,  transmit_as or  represent_as when applied  to  the
same type. 

· Two different wire types cannot resolve to the same user type and vice versa.
· The user type may or may not be rpc-able.
· The user type may or may not be known to MIDL.

1.1.9User supplied routines
The routines required by user_marshall have the following prototypes. 
<type_name> means a user specific  type name.  This may be non-rpcable type or even, when used with
user_marshal, a type unknown to MIDL at all. The wire type name (the name of transmissible type) is not
used here.

unsigned long __RPC_USER  <type_name>_UserSize(
unsigned long __RPC_FAR * pFlags,
unsigned long     StartingSize,
<type_name>  __RPC_FAR * pFoo);

unsigned char __RPC_FAR * __RPC_USER  <type_name>_UserMarshal(
unsigned long __RPC_FAR * pFlags,
unsigned char __RPC_FAR *     Buffer,
<type_name>  __RPC_FAR * pFoo);

unsigned char __RPC_FAR * __RPC_USER  <type_name>_UserUnmarshal(
unsigned long __RPC_FAR * pFlags,
unsigned char __RPC_FAR *    Buffer,
<type_name>  __RPC_FAR * pFoo);

void __RPC_USER  <type_name>_UserFree(
unsigned long __RPC_FAR * pFlags,
<type_name>  __RPC_FAR * pFoo );

The meaning of the arguments is as follows:
pFlags - pointer to a flag ulong. Flags: local call flag, data rep flag.
pBuffer - the current buffer pointer,
pFoo - pointer to a user type object
StartingSize - the buffer size (offset) before the object 

The return value when sizing, marshaling or unmarshaling is the new offset or buffer position. See the
function description below for details.
The flags pointed to by the first argument have the following layout.
31 24 16 8 4 0

Floating point Int Char MSHCTX flags

Ndr data representation Marshal context flags

· Upper word: NDR representation flags as defined by DCE: floating point, endianess and character
representations.

· Lower word: marshaling context flags as defined by the COM channel. The flags are defined in the
public wtypes.h file (and in wtypes.idl file). Currently the following flags are defined:
typedef 
enum tagMSHCTX
    { MSHCTX_LOCAL = 0,

MSHCTX_NOSHAREDMEM = 1,

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved



Chapter 13. Interface Definition Language The COM Specification

MSHCTX_DIFFERENTMACHINE = 2,
MSHCTX_INPROC = 3

    } MSHCTX;

The flags make it possible to differ the behavior of the routines depending on the context for the RPC
call. For example when a handle is remoted in-process it could be sent as a handle (a long), while sending
it remotely would mean sending the data related to the handle. 

_UserSize
The *_UserSize routine is called when sizing the RPC data buffer before the marshaling on the client or
server side. The routine should  work in terms of cumulative size. The StartingSize argument is the current
buffer offset . The routine should return the cumulative size that includes the possible padding and then
the data size. The starting size indicates the buffer offset for the user object and it may or may not be
aligned properly. User’s routine should account for all padding as necessary. In other words, the routine
should return a new offset, after the user object. The sizing routine is not called if the wire size can be
computed at the compile time. Note that for most unions, even if there are no pointers, the actual size of
the wire representation may be determined only at the runtime.
This routine actually can return an overestimate as long as the marshaling routine does not use more than
the sizing routine promised and so the marshaling buffer is not overwritten then or later (by subsequent
objects).

_UserMarsahal
The  *_UserMarshal routine  is called  when marshaling  the  data  on the  client  or server  side.  The buffer
pointer  may  or  may  not  be  aligned  upon  the  entry.  The  routine  should  align  the  buffer  pointer
appropriately, marshal the data and then return the new buffer pointer position which is at the first “free”
byte after the marshaled object. For the complications related to pointees see the next chapter.
Please note that the wire type specification is a contract that determines the actual layout of the data in
the buffer. For example,  if the conversion is needed and done by the NDR engine, it follows from the
wire type definitions how much data would be processed in the buffer for the type.

_UserUnmarshal
The *_UserUnmarshal routine is called when unmarshaling the data on the client or server side. The flags
indicate if data conversion is needed (if needed, it has been performed by the NDR engine before the call
to the routine). The buffer pointer may or may not be aligned upon the entry. The routine should align the
buffer as appropriate, unmarshal the data and then return the new buffer pointer position, which is at the
first  “free”  byte  after  the  unmarshaled  object.  For the  complications related  to pointees  see the  next
chapter

_UserFree
The  *_UserFree routine is called when freeing the data on the server side. The object  itself doesn’t get
freed as the engine takes care of it. The user shall free the pointees of the top level objects.

1.1.10The library keyword
[attributes] library libname {definitions};

The library keyword indicates that a type library (See Chapter 14) should be generated. 4   Below is an
example library section.

[ 
uuid(3C591B22-1F13-101B-B826-00DD01103DE1), // IID_ISome 
object

] 
4  Historically the library statement was supported only in a variant of IDL called ODL that was central to OLE Automation.

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved



The COM Specification Chapter 13. Interface Definition Language

interface ISome : IUnknown 
{ 

HRESULT DoSomething(void); 
} 

[ 
uuid(3C591B20-1F13-101B-B826-00DD01103DE1), // LIBID_Lines 
helpstring("Lines 1.0 Type Library"), 
lcid(0x0409), 
version(1.0) 

] 
library Lines 
{ 

importlib("stdole.tlb"); 
[ 

uuid(3C591B21-1F13-101B-B826-00DD01103DE1), // CLSID_Lines 
helpstring("Lines Class"), 
appobject 

] 
coclass Lines 
{ 

[default] interface ISome; 
interface IDispatch; 

} 
} 

1.2Mapping from ORPC IDL to DCE RPC IDL.
From the above extensions, and the wire representation definitions, one can conclude the following rules
for converting ORPC IDL files to DCE IDL files:
1. Remove the [object] attribute from the interface definition.
2. Insert “[in] handle_t h” as the first argument of each method, “ [in] ORPCTHIS *_orpcthis” as the second,

and “[out] ORPCTHAT *_orpcthat” as the third.
3. Manually insert declarations for the operations that were inherited, if any. You may want to make the

method names unique, unless the EPV invocation style is always going to be used.  One way to
do this is to prefix each method with the name of the interface. (Note that the IUnknown methods
will never be called, as the IRemUnknown interface is used instead.)

4. Replace each occurrence of a type name derived from an interface name, or an  [iid_is] qualified void*
with OBJREF. Remove [iid_is] attributes.

1.2.1An Example

Object RPC Style
[object, uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]
interface IFoo: IUnknown

{
HRESULT Bar([in] short i, [in] IBozo* pIB, [out] IWaz** ppIW);
HRESULT Zork([in, ref] UUID* iid,  [out, iid_is(iid)] void** ppvoid);
};

DCE style
[uuid(b5483f00-4f6c-101b-a1c7-00aa00389acb)]
interface IFoo

{
HRESULT IFoo_QueryInterface([in] handle_t h, [in] ORPCTHIS* _orpcthis, [out] ORPCTHAT* _orpcthat, [in, ref] UUID* iid, 

[out] OBJREF** ppOR);
ULONG IFoo_AddRef([in] handle_t, [in] ORPCTHIS* _orpcthis, [out] ORPCTHAT* _orpcthat);
ULONG IFoo_Release([in] handle_t, [in] ORPCTHIS* _orpcthis, [out] ORPCTHAT* _orpcthat);
HRESULT IFoo_Bar([in] handle_t h, [in] ORPCTHIS* _orpcthis, [out] ORPCTHAT* _orpcthat, [in, ref] OBJREF* porIB, [out, 

ref] OBJREF** pporIW);

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved



Chapter 13. Interface Definition Language The COM Specification

HRESULT IFoo_Zork([in]handle_t h, [in] ORPCTHIS* _orpcthis, [out] ORPCTHAT* _orpcthat, [in, ref] UUID* iid, [out] 
OBJREF** ppvoid);

};
See Chapter  15 Network Protocol  for information on the  ORPCTHIS and  ORPCTHAT structures and the
IRemUnknown interface.

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

This page intentionally left blank.


	1 Interface Definition Language
	1.1 Object RPC IDL Extensions
	1.1.1 ‘Object’ interface attribute
	1.1.2 Interface name as a type
	1.1.3 No handle_t required
	1.1.4 Interface inheritance
	1.1.5 iid_is and use of void*
	1.1.6 All methods must return void or HRESULT
	1.1.7 The wire_marshal attribute
	1.1.8 The user_marshal attribute
	1.1.9 User supplied routines
	_UserSize
	_UserMarsahal
	_UserUnmarshal
	_UserFree

	1.1.10 The library keyword

	1.2 Mapping from ORPC IDL to DCE RPC IDL.
	1.2.1 An Example
	Object RPC Style
	DCE style




